\(\int \sin ^2(a+b x) \sqrt {d \tan (a+b x)} \, dx\) [55]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 227 \[ \int \sin ^2(a+b x) \sqrt {d \tan (a+b x)} \, dx=-\frac {3 \sqrt {d} \arctan \left (1-\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}+\frac {3 \sqrt {d} \arctan \left (1+\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}+\frac {3 \sqrt {d} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)-\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}-\frac {3 \sqrt {d} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)+\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{3/2}}{2 b d} \]

[Out]

-3/8*arctan(1-2^(1/2)*(d*tan(b*x+a))^(1/2)/d^(1/2))*d^(1/2)/b*2^(1/2)+3/8*arctan(1+2^(1/2)*(d*tan(b*x+a))^(1/2
)/d^(1/2))*d^(1/2)/b*2^(1/2)+3/16*ln(d^(1/2)-2^(1/2)*(d*tan(b*x+a))^(1/2)+d^(1/2)*tan(b*x+a))*d^(1/2)/b*2^(1/2
)-3/16*ln(d^(1/2)+2^(1/2)*(d*tan(b*x+a))^(1/2)+d^(1/2)*tan(b*x+a))*d^(1/2)/b*2^(1/2)-1/2*cos(b*x+a)^2*(d*tan(b
*x+a))^(3/2)/b/d

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {2671, 294, 335, 303, 1176, 631, 210, 1179, 642} \[ \int \sin ^2(a+b x) \sqrt {d \tan (a+b x)} \, dx=-\frac {3 \sqrt {d} \arctan \left (1-\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}+\frac {3 \sqrt {d} \arctan \left (\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}+1\right )}{4 \sqrt {2} b}+\frac {3 \sqrt {d} \log \left (\sqrt {d} \tan (a+b x)-\sqrt {2} \sqrt {d \tan (a+b x)}+\sqrt {d}\right )}{8 \sqrt {2} b}-\frac {3 \sqrt {d} \log \left (\sqrt {d} \tan (a+b x)+\sqrt {2} \sqrt {d \tan (a+b x)}+\sqrt {d}\right )}{8 \sqrt {2} b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{3/2}}{2 b d} \]

[In]

Int[Sin[a + b*x]^2*Sqrt[d*Tan[a + b*x]],x]

[Out]

(-3*Sqrt[d]*ArcTan[1 - (Sqrt[2]*Sqrt[d*Tan[a + b*x]])/Sqrt[d]])/(4*Sqrt[2]*b) + (3*Sqrt[d]*ArcTan[1 + (Sqrt[2]
*Sqrt[d*Tan[a + b*x]])/Sqrt[d]])/(4*Sqrt[2]*b) + (3*Sqrt[d]*Log[Sqrt[d] + Sqrt[d]*Tan[a + b*x] - Sqrt[2]*Sqrt[
d*Tan[a + b*x]]])/(8*Sqrt[2]*b) - (3*Sqrt[d]*Log[Sqrt[d] + Sqrt[d]*Tan[a + b*x] + Sqrt[2]*Sqrt[d*Tan[a + b*x]]
])/(8*Sqrt[2]*b) - (Cos[a + b*x]^2*(d*Tan[a + b*x])^(3/2))/(2*b*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 2671

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Dist[b*(ff/f), Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*(Tan[e + f*x]/ff
)], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = \frac {d \text {Subst}\left (\int \frac {x^{5/2}}{\left (d^2+x^2\right )^2} \, dx,x,d \tan (a+b x)\right )}{b} \\ & = -\frac {\cos ^2(a+b x) (d \tan (a+b x))^{3/2}}{2 b d}+\frac {(3 d) \text {Subst}\left (\int \frac {\sqrt {x}}{d^2+x^2} \, dx,x,d \tan (a+b x)\right )}{4 b} \\ & = -\frac {\cos ^2(a+b x) (d \tan (a+b x))^{3/2}}{2 b d}+\frac {(3 d) \text {Subst}\left (\int \frac {x^2}{d^2+x^4} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{2 b} \\ & = -\frac {\cos ^2(a+b x) (d \tan (a+b x))^{3/2}}{2 b d}-\frac {(3 d) \text {Subst}\left (\int \frac {d-x^2}{d^2+x^4} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{4 b}+\frac {(3 d) \text {Subst}\left (\int \frac {d+x^2}{d^2+x^4} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{4 b} \\ & = -\frac {\cos ^2(a+b x) (d \tan (a+b x))^{3/2}}{2 b d}+\frac {\left (3 \sqrt {d}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {d}+2 x}{-d-\sqrt {2} \sqrt {d} x-x^2} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}+\frac {\left (3 \sqrt {d}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {d}-2 x}{-d+\sqrt {2} \sqrt {d} x-x^2} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}+\frac {(3 d) \text {Subst}\left (\int \frac {1}{d-\sqrt {2} \sqrt {d} x+x^2} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{8 b}+\frac {(3 d) \text {Subst}\left (\int \frac {1}{d+\sqrt {2} \sqrt {d} x+x^2} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{8 b} \\ & = \frac {3 \sqrt {d} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)-\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}-\frac {3 \sqrt {d} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)+\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{3/2}}{2 b d}+\frac {\left (3 \sqrt {d}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}-\frac {\left (3 \sqrt {d}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b} \\ & = -\frac {3 \sqrt {d} \arctan \left (1-\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}+\frac {3 \sqrt {d} \arctan \left (1+\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}+\frac {3 \sqrt {d} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)-\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}-\frac {3 \sqrt {d} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)+\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{3/2}}{2 b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.46 \[ \int \sin ^2(a+b x) \sqrt {d \tan (a+b x)} \, dx=-\frac {\left (3 \arcsin (\cos (a+b x)-\sin (a+b x)) \csc (a+b x)+3 \csc (a+b x) \log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 (a+b x))}\right )+2 \sqrt {\sin (2 (a+b x))}\right ) \sqrt {\sin (2 (a+b x))} \sqrt {d \tan (a+b x)}}{8 b} \]

[In]

Integrate[Sin[a + b*x]^2*Sqrt[d*Tan[a + b*x]],x]

[Out]

-1/8*((3*ArcSin[Cos[a + b*x] - Sin[a + b*x]]*Csc[a + b*x] + 3*Csc[a + b*x]*Log[Cos[a + b*x] + Sin[a + b*x] + S
qrt[Sin[2*(a + b*x)]]] + 2*Sqrt[Sin[2*(a + b*x)]])*Sqrt[Sin[2*(a + b*x)]]*Sqrt[d*Tan[a + b*x]])/b

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(528\) vs. \(2(171)=342\).

Time = 0.92 (sec) , antiderivative size = 529, normalized size of antiderivative = 2.33

method result size
default \(-\frac {\left (4 \cos \left (b x +a \right ) \sin \left (b x +a \right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}+4 \sin \left (b x +a \right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}-6 \arctan \left (\frac {\sin \left (b x +a \right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}+\cos \left (b x +a \right )-1}{-1+\cos \left (b x +a \right )}\right )+6 \arctan \left (\frac {-\sin \left (b x +a \right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}+\cos \left (b x +a \right )-1}{-1+\cos \left (b x +a \right )}\right )-3 \ln \left (-\frac {\cot \left (b x +a \right ) \cos \left (b x +a \right )-2 \cot \left (b x +a \right )-2 \sin \left (b x +a \right ) \sqrt {-\left (\cot ^{3}\left (b x +a \right )\right )+3 \left (\cot ^{2}\left (b x +a \right )\right ) \csc \left (b x +a \right )-3 \cot \left (b x +a \right ) \left (\csc ^{2}\left (b x +a \right )\right )+\csc ^{3}\left (b x +a \right )+\cot \left (b x +a \right )-\csc \left (b x +a \right )}-2 \cos \left (b x +a \right )-\sin \left (b x +a \right )+\csc \left (b x +a \right )+2}{-1+\cos \left (b x +a \right )}\right )+3 \ln \left (-\frac {\cot \left (b x +a \right ) \cos \left (b x +a \right )-2 \cot \left (b x +a \right )+2 \sin \left (b x +a \right ) \sqrt {-\left (\cot ^{3}\left (b x +a \right )\right )+3 \left (\cot ^{2}\left (b x +a \right )\right ) \csc \left (b x +a \right )-3 \cot \left (b x +a \right ) \left (\csc ^{2}\left (b x +a \right )\right )+\csc ^{3}\left (b x +a \right )+\cot \left (b x +a \right )-\csc \left (b x +a \right )}-2 \cos \left (b x +a \right )-\sin \left (b x +a \right )+\csc \left (b x +a \right )+2}{-1+\cos \left (b x +a \right )}\right )\right ) \sqrt {d \tan \left (b x +a \right )}\, \cos \left (b x +a \right ) \sqrt {2}}{16 b \left (\cos \left (b x +a \right )+1\right ) \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}}\) \(529\)

[In]

int(sin(b*x+a)^2*(d*tan(b*x+a))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/16/b*(4*cos(b*x+a)*sin(b*x+a)*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)+4*sin(b*x+a)*2^(1/2)*
(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)-6*arctan((sin(b*x+a)*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+
a)+1)^2)^(1/2)+cos(b*x+a)-1)/(-1+cos(b*x+a)))+6*arctan((-sin(b*x+a)*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a
)+1)^2)^(1/2)+cos(b*x+a)-1)/(-1+cos(b*x+a)))-3*ln(-(cot(b*x+a)*cos(b*x+a)-2*cot(b*x+a)-2*sin(b*x+a)*(-cot(b*x+
a)^3+3*cot(b*x+a)^2*csc(b*x+a)-3*cot(b*x+a)*csc(b*x+a)^2+csc(b*x+a)^3+cot(b*x+a)-csc(b*x+a))^(1/2)-2*cos(b*x+a
)-sin(b*x+a)+csc(b*x+a)+2)/(-1+cos(b*x+a)))+3*ln(-(cot(b*x+a)*cos(b*x+a)-2*cot(b*x+a)+2*sin(b*x+a)*(-cot(b*x+a
)^3+3*cot(b*x+a)^2*csc(b*x+a)-3*cot(b*x+a)*csc(b*x+a)^2+csc(b*x+a)^3+cot(b*x+a)-csc(b*x+a))^(1/2)-2*cos(b*x+a)
-sin(b*x+a)+csc(b*x+a)+2)/(-1+cos(b*x+a))))*(d*tan(b*x+a))^(1/2)*cos(b*x+a)/(cos(b*x+a)+1)/(-cos(b*x+a)*sin(b*
x+a)/(cos(b*x+a)+1)^2)^(1/2)*2^(1/2)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.38 (sec) , antiderivative size = 934, normalized size of antiderivative = 4.11 \[ \int \sin ^2(a+b x) \sqrt {d \tan (a+b x)} \, dx=\text {Too large to display} \]

[In]

integrate(sin(b*x+a)^2*(d*tan(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

-1/32*(16*sqrt(d*sin(b*x + a)/cos(b*x + a))*cos(b*x + a)*sin(b*x + a) - 3*b*(-d^2/b^4)^(1/4)*log(27/2*d^2*cos(
b*x + a)*sin(b*x + a) + 27/2*(b^3*(-d^2/b^4)^(3/4)*cos(b*x + a)^2 - b*d*(-d^2/b^4)^(1/4)*cos(b*x + a)*sin(b*x
+ a))*sqrt(d*sin(b*x + a)/cos(b*x + a)) - 27/4*(2*b^2*d*cos(b*x + a)^2 - b^2*d)*sqrt(-d^2/b^4)) + 3*b*(-d^2/b^
4)^(1/4)*log(27/2*d^2*cos(b*x + a)*sin(b*x + a) - 27/2*(b^3*(-d^2/b^4)^(3/4)*cos(b*x + a)^2 - b*d*(-d^2/b^4)^(
1/4)*cos(b*x + a)*sin(b*x + a))*sqrt(d*sin(b*x + a)/cos(b*x + a)) - 27/4*(2*b^2*d*cos(b*x + a)^2 - b^2*d)*sqrt
(-d^2/b^4)) - 3*I*b*(-d^2/b^4)^(1/4)*log(27/2*d^2*cos(b*x + a)*sin(b*x + a) - 27/2*(I*b^3*(-d^2/b^4)^(3/4)*cos
(b*x + a)^2 + I*b*d*(-d^2/b^4)^(1/4)*cos(b*x + a)*sin(b*x + a))*sqrt(d*sin(b*x + a)/cos(b*x + a)) + 27/4*(2*b^
2*d*cos(b*x + a)^2 - b^2*d)*sqrt(-d^2/b^4)) + 3*I*b*(-d^2/b^4)^(1/4)*log(27/2*d^2*cos(b*x + a)*sin(b*x + a) -
27/2*(-I*b^3*(-d^2/b^4)^(3/4)*cos(b*x + a)^2 - I*b*d*(-d^2/b^4)^(1/4)*cos(b*x + a)*sin(b*x + a))*sqrt(d*sin(b*
x + a)/cos(b*x + a)) + 27/4*(2*b^2*d*cos(b*x + a)^2 - b^2*d)*sqrt(-d^2/b^4)) - 3*b*(-d^2/b^4)^(1/4)*log(27*d^2
 + 54*(b^3*(-d^2/b^4)^(3/4)*cos(b*x + a)*sin(b*x + a) - b*d*(-d^2/b^4)^(1/4)*cos(b*x + a)^2)*sqrt(d*sin(b*x +
a)/cos(b*x + a))) + 3*b*(-d^2/b^4)^(1/4)*log(27*d^2 - 54*(b^3*(-d^2/b^4)^(3/4)*cos(b*x + a)*sin(b*x + a) - b*d
*(-d^2/b^4)^(1/4)*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)/cos(b*x + a))) - 3*I*b*(-d^2/b^4)^(1/4)*log(27*d^2 - 54*
(I*b^3*(-d^2/b^4)^(3/4)*cos(b*x + a)*sin(b*x + a) + I*b*d*(-d^2/b^4)^(1/4)*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)
/cos(b*x + a))) + 3*I*b*(-d^2/b^4)^(1/4)*log(27*d^2 - 54*(-I*b^3*(-d^2/b^4)^(3/4)*cos(b*x + a)*sin(b*x + a) -
I*b*d*(-d^2/b^4)^(1/4)*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)/cos(b*x + a))))/b

Sympy [F]

\[ \int \sin ^2(a+b x) \sqrt {d \tan (a+b x)} \, dx=\int \sqrt {d \tan {\left (a + b x \right )}} \sin ^{2}{\left (a + b x \right )}\, dx \]

[In]

integrate(sin(b*x+a)**2*(d*tan(b*x+a))**(1/2),x)

[Out]

Integral(sqrt(d*tan(a + b*x))*sin(a + b*x)**2, x)

Maxima [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.85 \[ \int \sin ^2(a+b x) \sqrt {d \tan (a+b x)} \, dx=\frac {3 \, d^{4} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (b x + a\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (b x + a\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} - \frac {\sqrt {2} \log \left (d \tan \left (b x + a\right ) + \sqrt {2} \sqrt {d \tan \left (b x + a\right )} \sqrt {d} + d\right )}{\sqrt {d}} + \frac {\sqrt {2} \log \left (d \tan \left (b x + a\right ) - \sqrt {2} \sqrt {d \tan \left (b x + a\right )} \sqrt {d} + d\right )}{\sqrt {d}}\right )} - \frac {8 \, \left (d \tan \left (b x + a\right )\right )^{\frac {3}{2}} d^{4}}{d^{2} \tan \left (b x + a\right )^{2} + d^{2}}}{16 \, b d^{3}} \]

[In]

integrate(sin(b*x+a)^2*(d*tan(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

1/16*(3*d^4*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d*tan(b*x + a)))/sqrt(d))/sqrt(d) + 2*sqrt
(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d*tan(b*x + a)))/sqrt(d))/sqrt(d) - sqrt(2)*log(d*tan(b*x +
a) + sqrt(2)*sqrt(d*tan(b*x + a))*sqrt(d) + d)/sqrt(d) + sqrt(2)*log(d*tan(b*x + a) - sqrt(2)*sqrt(d*tan(b*x +
 a))*sqrt(d) + d)/sqrt(d)) - 8*(d*tan(b*x + a))^(3/2)*d^4/(d^2*tan(b*x + a)^2 + d^2))/(b*d^3)

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 219, normalized size of antiderivative = 0.96 \[ \int \sin ^2(a+b x) \sqrt {d \tan (a+b x)} \, dx=-\frac {\frac {8 \, \sqrt {d \tan \left (b x + a\right )} d^{3} \tan \left (b x + a\right )}{{\left (d^{2} \tan \left (b x + a\right )^{2} + d^{2}\right )} b} - \frac {6 \, \sqrt {2} {\left | d \right |}^{\frac {3}{2}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {{\left | d \right |}} + 2 \, \sqrt {d \tan \left (b x + a\right )}\right )}}{2 \, \sqrt {{\left | d \right |}}}\right )}{b} - \frac {6 \, \sqrt {2} {\left | d \right |}^{\frac {3}{2}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {{\left | d \right |}} - 2 \, \sqrt {d \tan \left (b x + a\right )}\right )}}{2 \, \sqrt {{\left | d \right |}}}\right )}{b} + \frac {3 \, \sqrt {2} {\left | d \right |}^{\frac {3}{2}} \log \left (d \tan \left (b x + a\right ) + \sqrt {2} \sqrt {d \tan \left (b x + a\right )} \sqrt {{\left | d \right |}} + {\left | d \right |}\right )}{b} - \frac {3 \, \sqrt {2} {\left | d \right |}^{\frac {3}{2}} \log \left (d \tan \left (b x + a\right ) - \sqrt {2} \sqrt {d \tan \left (b x + a\right )} \sqrt {{\left | d \right |}} + {\left | d \right |}\right )}{b}}{16 \, d} \]

[In]

integrate(sin(b*x+a)^2*(d*tan(b*x+a))^(1/2),x, algorithm="giac")

[Out]

-1/16*(8*sqrt(d*tan(b*x + a))*d^3*tan(b*x + a)/((d^2*tan(b*x + a)^2 + d^2)*b) - 6*sqrt(2)*abs(d)^(3/2)*arctan(
1/2*sqrt(2)*(sqrt(2)*sqrt(abs(d)) + 2*sqrt(d*tan(b*x + a)))/sqrt(abs(d)))/b - 6*sqrt(2)*abs(d)^(3/2)*arctan(-1
/2*sqrt(2)*(sqrt(2)*sqrt(abs(d)) - 2*sqrt(d*tan(b*x + a)))/sqrt(abs(d)))/b + 3*sqrt(2)*abs(d)^(3/2)*log(d*tan(
b*x + a) + sqrt(2)*sqrt(d*tan(b*x + a))*sqrt(abs(d)) + abs(d))/b - 3*sqrt(2)*abs(d)^(3/2)*log(d*tan(b*x + a) -
 sqrt(2)*sqrt(d*tan(b*x + a))*sqrt(abs(d)) + abs(d))/b)/d

Mupad [F(-1)]

Timed out. \[ \int \sin ^2(a+b x) \sqrt {d \tan (a+b x)} \, dx=\int {\sin \left (a+b\,x\right )}^2\,\sqrt {d\,\mathrm {tan}\left (a+b\,x\right )} \,d x \]

[In]

int(sin(a + b*x)^2*(d*tan(a + b*x))^(1/2),x)

[Out]

int(sin(a + b*x)^2*(d*tan(a + b*x))^(1/2), x)